

29100 Piacenza - Via della Conciliazione, 45/a Telefono +39-0523-593622 (r.a.) Telefax +39-0523-593640 <u>www.geoinvest.it</u>

Geoinvest s.r.l. is a privately owned geophysical and geotechnical engineering company with a reputation for providing timely and reliable services. Geoinvest serves individuals and industry, public and private companies, governments, international development agencies and academic institutions. Established in 1980 to enhance and develop geophysical technology for the geotechnical engineering sector, the company has steadily expanded to offer services in a wide range of geophysical exploration activities.

With a staff of experienced professionals (from geophysicists and geologists to geotechnical engineers) and a large inventory of state-of-theart in-house software, Geoinvest is uniquely positioned to serve most of exploration needs, whatever they involves:

GEOINVEST s.r.l. Geologia-Geofisica

04/10/2010

- *High resolution Resistivity Imaging*
- IP tomography

Electromagnetic Surveys

- Ground Penetrating Radar
- Frequency and time domain EM
- High resolution MT and AMT
- **Gravity and Magnetic Surveys**
 - Total field
 - Gradiometry

Seismic and Microseismic

Vp and Vs refraction and tomography
High resolution Reflection
Borehole seismic

04/10/2010

Geoinvest services are applied in the following fields: Archaeology

Preliminary investigations in regional planning
Location of buried archaeological remains

Engineering Geology and Geotechnical

Tunneling
Highways Railways Pipelines Slope stability Foundations
Cavity detection

Hydro geological Studies

•Aquifer geometry , water well positioning

Environmental Geology and contaminated site

Site characterization
Leachate plumes, contaminant migration
Landfill study, Leak detection on liner geomembrane
Vibrations monitoring

Mining Geophysics

Hydrocarbon and mineral exploration Geothermal exploration

SUBSURFACE GEOPHYSICAL INVESTIGATION FOR GEOENGINEERING GROUNDWATER AND ENVIRONMENTAL STUDIES

04/10/2010

GEOPHYSICAL METHODS

The geophysical methodologies use physical properties of the materials to caracterize their presence and distribution in the subsurface

Measuring form the surface in a non-invasive way geophysics is able to supply informations about the subsurface structure

The main geophysical parameters are:

- electrical resistivity/conductivity
- elasticity, density
- magnetic suscettivity
- radioactivity

GEOPHYSICAL METHODS

To explore the subsurface you always need a source of "energy" who defines the method:

PASSIVE METHODS (Natural source)

- Natural electric currents (telluric)
- Electrical Spontaneus Potential
- ✓Gravity
- ✓ Magnetism
- Seismic waves

ACTIVE METHODS (Artificial source)

- Electromagnetic waves
 Electrical resistivity
- ✓ Seismic waves

04/10/2010

ELECTRICAL RESISTIVITY METHODS

These method are used for hydrogeological and ground contamination surveys, site investigation (geological and mineral prospecting) and archaeological surveying

VERTICAL ELECTRIC SOUNDINGS
RESISTIVITY PROFILING
ELECTRICAL IMAGING

Four electrodes Measure resistivity at icreasing depth

VES FIELD CURVE

RESISTIVITY CROSS SECTION

HYDROGEOLOGICAL 3D MODEL

HYDROGEOLOGICAL 3D MODEL

RESISTIVITY IMAGING

A CONTINUOUS 2D RESISTIVITY CROSS SECTION

Field array

Measurement scheme

	••••••••••••••••••••••••••••••••••••••
	•••••

••	• • • • • • • • • • • • • • • • • • • •
0000	
00000	***************************************

00000000000	***************************************

DC Resistivity imaging

Data acquisition

- AGI Super Sting R1 IP
- Swift Smart electrodes and cables
- Automatic resistivity & IP imaging

Data processing

- Complete in-field QC
- Crooked line correction & preliminary analysis

Data interpretation

- + 2D, 3D inversion
- + 3D topographic modeling
- Cooperative interpretation

Evaluation of the subsurface layering

Evaluation of the subsurface layering

Evaluation of the subsurface layering

Water well planning

Watertable contamination survey

Geoengineering studies

E 1100

ELECTRIC TOMOGRAPHY TO BUILT THE GEOLOGICAL SECTION FOR A TUNNEL FEASIBILITY STUDY

GEOLOGICAL SECTIONS

04/10/2010

ELECTRIC TOMOGRAPHY 2D SECTIONS ON A TUNNEL PROJECT

ELECTRIC TOMOGRAPHY DATA PROCESSING 3D VIEW

25

ELECTRIC TOMOGRAPHY DATA PROCESSING 3D VIEW

ELECTRIC TOMOGRAPHY ON BRIDGE PROJECTS

ELECTRICAL TOMOGRAPHY SURVEY ON A INDUSTRIAL SITE ENVIRONMENTAL ASSESMENT

ELECTRICAL TOMOGRAPHY SURVEY FOR ENVIRONMENTAL SITE ASSESMENT

GEOPHYSICAL SITE ASSESMENT – 3D VISUALIZATION

River bottom resistivity section

WASTE LANDFILL ELECTRICAL IMAGING

THE VISUALIZATION OF A WASTE LANDFILL BODY CAN BE PERFORMED USING ELECTRIC IMAGING

GEOMEMBRANE LINERS CHECK

THE EARLY DETECTION OF A LEAKEAGE IN A GEOMEMBRANE LINER CAN AVOID POLLUTION FROM A WASTE DISPOSAL OR WATER LOOSE IN AN ARTIFICIAL

GEOMEMBRANE LEAKEAGE DETECTION

THE LEAKEAGE IN THE LINER CAN BE DETECTED PERFORMING AN ELECTRIC SURVEY JUST BEFORE THE FILLING PHASE OF THE BASIN

ELECTROMAGNETIC CONDUCTIVITY SURVEY

Frequency domain EM

THE ELECRICAL CHARACTERIZATION OF THE GROUND CAN BE PERORMED USING EM METHODS

THE CONDUCTIVITY (the reciprocal of resistivity) IS MEASURED WITHOUT ELECTRODES BUT THROUGH EM INDUCTION

ELECTROMAGNETIC CONDUCTIVITY SURVEY

Relatione 1592 file. /em31/trazzo/fie1.dec

A CONDUCTIVITY SURVEY CAN EASILY DEFINE THE PRESENCE OF HIDDEN MATERIALS IN THE SUBSURFACE

THE METHOD HAS WIDE VARIETY OF APPLICATIONS IN HYDROGEOLOGICAL, ENVIRONMENTAL AND ARCHAEOLOGICAL SURVEYS

> GEOINVEST s.r.l. Geologia-Geofisica

ELECTROMAGNETIC SURVEY FOR INDUSTRIAL ENVIRONMENTAL SITE ASSESMENT

ELECTROMAGNETIC AND ELECTRICAL TOMOGRAPHY FOR ENVIRONMENTAL SITE ASSESMENT

Ground Penetrating Radar (GPR)

GROUND PENETRATING RADAR USES EM WAVE TO INVESTIGATE THE SUBSURFACE

PHYSICAL DISCONTINUITIES DUE TO CHANGE IN THE ELECTRICAL PROPERTIES CAN REFLECT THE RADAR SIGNAL AND BE DETECTED FROM THE SURFACE

THE METOD HAS A WIDE VARIETY OF APPLICATION FROM SITE CHARACTERIZATION TO ARCHAEOLOGICAL SURVEY

Ground Probing Radar (GPR)

GPR ANOMALIES FROM ARCHAEOLOGICAL REMAINS

GPR SURVEY SCHEME

GPR ANOMALIES "TIME SLICE "3D VIEW

GPR ANOMALY SHOWING THE PRESENCE OF A BURIED TOMB BELOW A CHURCH FLOOR

SEISMIC METHODS

Rock density affect the seismic propagation velocity

The study of the propagation of the seismic waves in the ground is useful for determining interfaces between the different physical units

The most common seismic methods are: • REFRACTION SEISMIC - REFLECTION SEISMIC TOMOGRAPHY

2D SEISMIC TOMOGRAPHY ON BRIDGE PROJECTS

SEISMIC PROPERTIES OF THE MATERIALS CAN BE USED TO BUILT UP A GEOLOGIC MODEL WITHIN GEOENGINEERING PROJECTS

SUBSURFACE 3D SEISMIC SURVEY SENSORS LAYOUT AND RAY PATHS

SUBSURFACE 3D SEISMIC SURVEY VELOCITY MODEL

TUNNELLING PROJECT - SEISMIC TOMOGRAPHY

TUNNELLING PROJECT - SEISMIC TOMOGRAPHY

TUNNELLING PROJECT - SEISMIC TOMOGRAPHY

3D SEISMIC SURVEY ON A BRIDGE PILE

RILIEVO SISMICO 3D - Percorso dei raggi

RILIEVO SISMICO 3D - Isovolume V>2000 m/sec, vista lato Vigevano

04

3D SEISMIC SURVEY ON A BRIDGE PILE

MAGNETIC SURVEY - ARCHAELOGICAL CHARACTERIZATION

MAGNETIC SURVEY

MAGNETIC SURVEY PROCESSING

MAGNETIC SURVEY – DATA INTERPRETATION OUTLINE OF THE POSSIBLE ARCHAEOLOGICAL STRUCTURES

GEOELECTRICAL SURVEY for ARCHAEOLOGY

SITE EXCAVATIONS

High Resolution Gravity

High Resolution Gravity

Low Pass Filtered Residual Gravity Al Corniche Towers Site, Jeddah KSA

UTM Zone 37N WGS84 Bouguer density 2.00 gm/cc

High Resolution MT

Data acquisition

- MT, AMT, CSMT, Continuous tensor profiling survey
- + 24-bit networked system
- + GPS-clock synchronized remote reference
- Frequency range: 24 KHz to 0.001 Hz

Data processing

- Remote reference & robust in-field processing
- Complete in-field QC, data analysis & preliminary interpretation
- Data interpretation
 - Decomposition & analysis
 - + 1D, 2D inversion
 - + 3D modeling
 - Cooperative interpretation

04/10/2010

EM METHOD FOR HYDROCARBON INVESTIGATION

RESISTIVITY vs FREQUENCY

Period (seconds)

AMT / MT FIELD ARRAY

AMT / MT SURVEY OUTLINE

Geologia-Geofisica

AMT / MT CONTINUOUS PROFILING

AMT / MT CONTINUOUS PROFILING 2D MODEL

AMT / MT SURVEY – TOP OF THE RESISTOR UNIT (SALT DOME)

Wake up ! This is the end

Thank you